

Rockablepress.com
Envato.com

© Rockable Press 2011

All rights reserved. No part of this publication may be
reproduced or redistributed in any form without
the prior written permission of the publishers.

http://Rockablepress.com
http://Envato.com

Table of Contents3

Contents

Introduction 6

Files Included With The Book 7
A Code Convention 8

Setup & Managing Files 10

Managing Files 10
The functions.php file 11
Basic Setup 13
The wp_nav_menu() function 18
JavaScript Files 20
Image Functions 22

Theme Options Pages 28

The Options Page Design 28
Options Files 29
Generating the Pages 33
Styling and Scripts 50
Including the Files 56
Using this Theme Options Framework in Another Theme 57
The Home Page Slider Options 59
The JavaScript Code 60
Coding the Slider 60

Custom Post Types and Taxonomies 64

template_portfolio.php 75
single-portfolio.php 78
taxonomy-portfolio_cat.php 79

Table of Contents4

Meta Boxes 82

The Meta Box Options Files 84
Coding the Meta Box Class 86
Including the files 93
Using the Class in Other Themes 93

Custom Widgets 96

Making the Theme Widget-Ready 96
Custom Widgets 99

Latest Portfolio Item Widget 109
Contact Form Widget 112
Tabbed Widget 119

Miscellaneous Items 122

Breadcrumbs 122
Shortcodes 127
Threaded comments 130
Post Thumbnails 134

Internationalization and Translation 137

Text domains 137
I18n functions 138
Different i18n Scenarios 139
Generating the .po file 141
Using the PO file 145

Afterword 148

About The Author 149

Your Download Link 150

INTRODUCTION

Introduction6

Introduction
WordPress today is no longer regarded as just a blogging tool,
though quite possibly that was the reason it was created. Its
!exibility and ease of customization has led WordPress to be one
of the most popular Content Management Systems (CMS) used in
the web design and development industry.

As a web designer or developer, WordPress is one of the most
potent tools available at your disposal. WordPress 3.0 brings with it
a multitude of new features — the long-awaited Menu Manager and
Custom Post Types which expand WordPress’ CMS capabilities. In
this book, I am going to teach you to take advantage of WordPress’
more advanced features, from shortcodes to custom post types,
from creating options pages to custom widgets. Once you’re done
with this book, you will have a thorough grasp of exactly what is
needed to make a WordPress theme usable, !exible and useful.

In this book, I’m not going to be following the conventional
methods of writing that most books on WordPress development
follow. The approach being taken here assumes that you already
know intermediate WordPress coding (for example, you’ve read the
Rockstar WordPress Designer book) and have an understanding of
PHP. I’ve already converted the theme from HTML to WordPress.
You can "nd the complete theme in the folder WordPress, entitled
Rockable. What you are going to be working with is a stripped
down version of this theme. You will "nd a folder in the WordPress
directory called BasicFramework. Take a quick glance at it. You
will notice that there are no "les in the functions, language, and
widgets folders. This is the main difference between the framework
and the complete theme. As we go along, you will be "lling up
these folders with the necessary code — if you have any problems,
you can just take a look at the completed theme to "gure things
out. Note that the BasicFramework is not a theme. It lacks many
critical "les to work as a theme, so WordPress will just show you

http://rockablepress.com/books/rockstar-wordpress-designer/

Introduction7

errors if you try to install it as a theme. You have to start with this
BasicFramework and make it into a complete theme.

So, jump in and get ready to rumble!

Files Included With The Book
Packaged with this book, you will "nd several folders with "les
relating to this theme. They are:

Photoshop Files: The PSD "les for the design used in this
book.

HTML Theme: This is the HTML version of the PSD theme.
It consists of the various pages used in the theme — home
page, static page, blog page, single blog post, etc.

HTML Admin: This is the HTML design of the administration
panel used in the theme. I "nd it useful "rst to create the
admin theme in HTML, and then logically break it up into
smaller parts which are generated dynamically by PHP.
Sounds like a mouthful, but it’s quite interesting — I will
demonstrate how to do this in the book.

BasicFramework: This is the folder with the basic frame-
work for the theme. Rather than repeat everything you
probably already know about WordPress, I decided to
convert and create the basic structure for the theme. This
consists of the regular WordPress theme "les, including
the index.php "le, style.css stylesheet and various other
regular theme "les such as page.php, single.php, etc.
You can read more about WordPress template "les here
and here.

Completed Theme: This is the "nal completed theme which
is ready for use. It is basically the BasicFramework plus all
the advanced features you will learn about in this book.

http://codex.wordpress.org/Stepping_Into_Templates
http://codex.wordpress.org/Template_Hierarchy

Introduction8

These "les and templates can be used by you for both personal
and commercial purposes, but they may not be resold or
redistributed.

In addition, I recommend you use the BasicFramework as a base
to work upon while proceeding through the book. Note a few
things about this though:

The BasicFramework is NOT a working theme

It regularly uses the get_option() call. This is a WordPress
function that basically fetches an option from the database.
Example usage: get_option('theme_style'). You can
view the WordPress Codex article on this function here.
We are going to be creating a WordPress theme options
page which adds options to the database, so this function
is immensely helpful.

A Code Convention

Sometimes the code will be longer than can "t on the width of this
book’s page. If so, there will be a continuation marker (▶ or ▶) at the
end of the line. This means the text on the following line is intended
to be typed together with the previous line as one. For example,
the following is all typed as one line, with no break:

define('ROCKABLE_THEME_DIR', ▶
 get_bloginfo('template_directory'));

A hollow arrow indicates that a space is permissible between the
character at the end of the starting line and the "rst character of
the second; a solid arrow indicates that there should be no space.
The marker itself is not typed in.

http://codex.wordpress.org/Function_Reference/get_option

Setup & Managing Files10

Setup & Managing Files

Managing Files
While coding a WordPress theme, you should keep something in
mind: keep things as easy to edit as possible. This means that you
should reuse code that occurs multiple times, separate "les that
are used many times, and write functions rather than put, in large
pieces of code all over the place.

Open up your BasicFramework and take a look at the search.php,
archive.php, and taxonomy-portfolio_cat.php "les. These "les
are respectively used for search results, archives (category, tag,
date archives), and archives for the custom taxonomy we de"ne
later. You will notice that in all three "les an include statement is
used:

<?php include (ROCKABLE_INCLUDES . 'post-excerpt.php'); ?>

This "le, post-excerpt.php, displays the excerpt for a post along
with some metadata and a thumbnail. Rather than repeating this
code in three different "les, I decided instead to include one "le
that is reusable in many places. That way, if I wanted to make a
change, I could make it in one place and the change would be
re!ected in every page template that uses this "le. In addition to
this "le, there are "ve other "les in the includes folder:

homepage-slider.php: This "le is for the homepage slider.
I have separated this into a "le of its own for modularity and
so that editing it is easier. It makes sense to separate large
code blocks into their own "les.

pagination.php: This "le includes the plugin required for
pagination and displays pagination links.

Setup & Managing Files11

post-meta.php: This displays the metadata (date of pub-
lishing, comments, author, categories, etc.) for the post.

post-thumbnail.php: This displays (optionally) a post-
thumbnail for the post.

widget-columns.php: This displays the three widget
columns in the footer.

The functions.php file
The functions.php "le is a vital part of your theme. From the
Codex:

A theme can optionally use a functions file, which
resides in the theme subdirectory and is named
functions.php. This file basically acts like a plugin,
and if it is present in the theme you are using, it is
automatically loaded during WordPress initialization
(both for admin pages and external pages).

We’re going to use the functions "le a lot during this book. Open it
up, and add in this code:

<?php

$curr_theme = get_theme_data(TEMPLATEPATH . '/style.css');

$theme_version = trim($curr_theme['Version']);

if (!$theme_version) $theme_version = "1.0";

//Define constants:

define('ROCKABLE_FUNCTIONS', TEMPLATEPATH . '/functions/');

define('ROCKABLE_WIDGETS', TEMPLATEPATH . '/widgets/');

define('ROCKABLE_INCLUDES', TEMPLATEPATH . '/includes/');

define('ROCKABLE_THEME', 'WordThemer');

define('ROCKABLE_THEME_DIR', ▶
 get_bloginfo('template_directory'));

http://codex.wordpress.org/Theme_Development#Functions_File
http://codex.wordpress.org/Theme_Development#Functions_File

Setup & Managing Files12

define('ROCKABLE_THEME_DOCS', ▶
 ROCKABLE_THEME_DIR.'/functions/docs/docs.pdf');

define('ROCKABLE_THEME_LOGO', ▶
 ROCKABLE_THEME_DIR.'/functions/img/logo.png');

define('ROCKABLE_MAINMENU_NAME', 'general-options');

define('ROCKABLE_THEME_VERSION', $theme_version);

In this section of code, we are de"ning some constants which will
be used in our theme. These constants can be used in any "le
in the theme, and they help in making code more readable and
reducing its length. For example, if I wanted to include the "le
Rockable/includes/post-excerpt.php, I would have to use this
code:

include(TEMPLATEPATH . 'includes/post-excerpt.php');

Using my constants, it becomes shorter, and you immediately
understand what’s happening when you read it:

include(ROCKABLE_INCLUDES . 'post-excerpt.php');

In addition, there is another advantage: suppose I decided to
change my includes folder to modules — if using constants, all I
would have to do is change the de"nition for ROCKABLE_INCLUDES

— otherwise, I would have to search through every single "le,
replacing “/includes” with “/modules” — a rather annoying task.

The "rst three lines use built-in WordPress functions to get the
current theme version from style.css.

Setup & Managing Files13

Basic Setup
Next step: put the BasicFramework folder into your wp-content
folder, and activate the theme. Now, go to your WordPress site.
You should see an error:

Fatal error: Call to undefined function rockable_titles()

This means that we have called a function rockable_titles() in
header.php, but haven’t de"ned this function. Let’s do that now.

First, create an empty "le named custom-functions.php in the
functions folder. This will hold all of our custom functions used in
various places in the theme. The function in question dynamically
outputs the title for the current page. Here’s the code I used:

//TITLES

function rockable_titles(){

 $separator=stripslashes(get_option('rockable_separator'));

 if (!$separator)

 $separator="|";

 if (is_front_page())

 bloginfo('name');

 else if (is_single() or is_page() or is_home()){

 bloginfo('name');

 wp_title($separator,true,'');

 }

 else if (is_404()){

 bloginfo('name');

 echo " $separator ";

 _e('404 error - page not found', 'rockable');

 }

 else{

 bloginfo('name');

Setup & Managing Files14

 wp_title($separator,true,'');

 }

}

Quite straightforward. First, get a separator. If none is de"ned,
default to “ | ”. Then, output a title:

The blog name on the home page.

The blog name, separator, and page title on pages and
posts — e.g.: Sitename | Page name .

The blog name and “404 error” on 404 error pages.

A default fallback on other pages.

Note:

You will notice, instead of just using

echo '404 error - page not found';

I use

_e('404 error - page not found', 'rockable');

The reason for this is theme localization (easy translation). We’ll
come to that later, but for now know this: wherever you have
‘hard coded’ text, use _e instead of echo, and use __ (double
underscore) instead of a direct assignation. Examples:

_e('some text', 'rockable') instead of echo 'some
text'

$str = __('some text', 'rockable') instead of $str =
'some text'

Setup & Managing Files15

Now that our function is de"ned, we need to include the "le so that
this function is available to WordPress. Add this to functions.php:

//Load all-purpose functions:

 require_once (ROCKABLE_FUNCTIONS . ▶
 'custom-functions.php');

Next, we’ll get some basic stuff set up — let’s start with menus.
WordPress 3.0 created a new type of menu management — you
can add any links you want, and are no longer restricted to page-
only or category-only menus as before. You can see the new menu
interface by going to Appearance � Menus in your WordPress
Dashboard. This will only show up if you have support for menus
in your theme. To add support, include this line of code in
functions.php:

 add_theme_support('menus');

Now you will be able to see the menu interface:

Fig. 1-1. Menus interface.

Setup & Managing Files16

Next, you have to “register” a menu area. This means that when a
user creates a menu, they will see a place in the theme to assign
the menu. For example, I could assign a location for a header
menu — when a user creates a menu and adds it to the header
menu location, the menu will show up there. Create a new "le
named register-wp3.php in the functions folder and add this
code to it:

if (function_exists('register_nav_menu'))

 register_nav_menu('main_menu', __('Main Menu', ▶
 'rockable'));

endif;

This registers a new nav menu area with the ID “main_menu” and
the (translatable) name “Main Menu”. Include the new "le from
functions.php with this code:

 require_once (ROCKABLE_FUNCTIONS . 'register-wp3.php');

Now, create a new menu. You will see this box when it’s created:

Fig. 1-2. Registered menu locations.

Setup & Managing Files17

If you look at the HTML version of the theme, you will notice that
there is a small description under the menu title. To do this, we
need some custom code, as it is not immediately supported in
WordPress. In your custom-functions.php "le, create a new
function rockable_menu() and add in this code:

function rockable_menu(){

 if (function_exists('wp_nav_menu') && ▶
 has_nav_menu('main_menu')):

 wp_nav_menu(

 array(

 'theme_location' => 'main_menu',

 'container' => '',

 'menu_class' => 'sf-menu',

 'depth' => 2,

 'walker' => new rockable_menu_walker())

);

 else

 echo '<ul class="sf-menu">';

 wp_list_pages('depth=1&title_li=');

 echo '';

 endif;

}

We're using a few new functions here:

First, we check if the function wp_nav_menu() exists. If it
does not, the version is less than WP 3.0, so we can’t use
custom nav menus.

Then, we use has_nav_menu() — This function checks if a
menu has been assigned to a theme location.

If either of these are false, then we can’t display a nav menu.
So, we default to the wp_list_pages() function.

Setup & Managing Files18

The wp_nav_menu() function
The wp_nav_menu() function displays a custom nav menu. Its
parameters are:

menu: The ID, slug or name of a created menu

container: The wrapping element, e.g. <div>

container_class: The class applied to the container

container_id: The ID applied to the container

menu_class: The class assigned to the menu

menu_id: The ID applied to the menu

echo: Whether to actually display the menu, or just
return it; defaults to true

fallback_cb: The fallback function if the menu cannot
be displayed, e.g. if no menu is found

before, after: The text to display before and after the
link text

link_before, link_ after: The text to display before and
after the link

depth: How many levels of sub-menus to display.
Default is 0 (unlimited levels)

walker: a “walker” object to use for the menu (more
on this below)

theme_location: The ID of a registered nav menu
(main_menu) in our case

For our menu, I have added arguments as per the HTML — no
container element, a class of sf-menu assigned to the and

http://codex.wordpress.org/Function_Reference/wp_nav_menu

Setup & Managing Files19

a depth of 2 (parents and one sublevel). The interesting part here
is the argument for a custom Walker. In 99% of cases, this isn’t
required — we need it only to display the description. On its own,
WordPress uses a Walker class to display the navigation. We can
simply extend this Walker class to output things our way. Read
more about classes here: http://php.net/manual/en/language.oop5.
php.

Rather than extend our Walker without any base, I decided to just
modify the regular Walker code. If you see here, in the core code
of WordPress: http://core.trac.wordpress.org/browser/trunk/wp-
includes/nav-menu-template.php, you can see the Walker code
at the top of the "le. We only need to deal with the start_el()
function. Add this code to custom-functions.php:

class rockable_menu_walker extends Walker_Nav_Menu

{

 function start_el(&$output, $item, $depth, $args){

The keyword extends tells PHP we are writing a class which just
builds upon the Walker_Nav_Menu class. Basically, we are just
overwriting the start_el() function.

Now, just copy the entire code of the start_el() function from
the source code in that link and paste it into your start_el()
function. Add this line below the $attributes assignment:

$description =! empty($item->description) ? ''. ▶
esc_attr($item->description).'' : '';

That fetches the description of the menu item and assigns it to
$description.

Now, we need to display this description somewhere. Look for this
line in your code:

http://php.net/manual/en/language.oop5.php
http://php.net/manual/en/language.oop5.php
http://core.trac.wordpress.org/browser/trunk/wp-includes/nav-menu-template.php
http://core.trac.wordpress.org/browser/trunk/wp-includes/nav-menu-template.php

Setup & Managing Files20

$item_output .= $args->link_before . apply_filters(▶
 'the_title', $item->title, $item->ID) . ▶
 $args->link_after;

Change that to:

$item_output .= $args->link_before . apply_filters(▶
 'the_title', $item->title, $item->ID);

$item_output .= $description . $args->link_after;

The difference: we’ve added in our $description variable to show
in the output. That’s it. With those two edits we’re done with the
backend code. You need to do one more thing to add descriptions
though. In the nav menu interface, click on Screen Options and
check the Description checkbox. This will allow you to enter
descriptions.

Fig. 1-3. Menus interface — screen options.

And that’s it for the nav menus. Before we go further, we should
quickly write up a few generic functions which will be used
throughout the theme and that can be used in other themes as well.

JavaScript Files
You might notice, there are no JavaScript "les included in
header.php. Instead, we are going to use a WordPress function
called wp_enqueue_script(). This function safely adds JS "les

http://codex.wordpress.org/Function_Reference/wp_enqueue_script

Setup & Managing Files21

to the WordPress page. It prevents con!icts: for example, if you
added jQuery to the header and a plugin also wanted to add
jQuery, there would be two jQuery "les included in the page. If
you used wp_enqueue_script() then it would only be added
once — WordPress would take care of that.

So, we are going to enqueue all the JS "les used in the theme. Add
this to functions.php:

if (!is_admin()) {

 wp_enqueue_script('jquery');

 wp_enqueue_script('superfish', ROCKABLE_THEME_DIR. ▶
 '/assets/js/superfish.js');

 wp_enqueue_script('jcarousel', ROCKABLE_THEME_DIR. ▶
 '/assets/js/jquery.jcarousel.min.js');

 wp_enqueue_script('jqueryui_custom', ROCKABLE_THEME_DIR. ▶
 '/assets/js/jquery-ui-1.8.1.custom.min.js');

 wp_enqueue_script('cufon', ROCKABLE_THEME_DIR. ▶
 '/assets/js/cufon.js');

 wp_enqueue_script('font', ROCKABLE_THEME_DIR. ▶
 '/assets/js/myriad_pro.font.js');

 wp_enqueue_script('rockable', ROCKABLE_THEME_DIR. ▶
 '/assets/js/rockable.js');

 wp_enqueue_script('rockable_contact', ▶
 ROCKABLE_THEME_DIR.'/assets/js/rockable_contact.js');

 wp_enqueue_script('comment-reply');

}

The usage of the function is:

wp_enqueue_script($handle, $src, $deps, $ver, $in_footer);

handle is the unique name you give to the script, src is the source
URL, deps is the dependency (e.g. if it is reliant on jQuery), ver is
the version, used to prevent caching when versions are changed

Setup & Managing Files22

and in_footer speci"es whether to add the footer to the <head>
or to the footer.

Image Functions
Images are a pretty important part of premium WordPress themes.
They are used in most themes as post thumbnails, in galleries, etc.
So rather than perform the same image-fetching techniques many
times, we should automate the process. Here are two functions
(to be added to custom-functions.php) which will automate this
for us.

function rockable_post_image(){

 global $post;

 $image = '';

 //Get the image from the post meta box

 $image = get_post_meta($post->ID, 'rockable_post_image', ▶
 true);

 if ($image) return $image;

 //If the above doesn't exist, get the post thumbnail

 $image_id = get_post_thumbnail_id($post->ID);

 $image = wp_get_attachment_image_src($image_id, ▶
 'rockable_thumb');

 $image = $image[0];

 if ($image) return $image;

 //If there is still no image, get the first image from ▶
 the post

 return rockable_get_first_image();

}

function rockable_get_first_image(){

 global $post, $posts;

 $first_img = '';

Setup & Managing Files23

 ob_start();

 ob_end_clean();

 $output = preg_match_all('/<img.+src=[\'"]([^\'"]+) ▶
 [\'"].*>/i', $post->post_content, $matches);

 $first_img="";

 if (isset($matches[1][0]))

 $first_img = $matches[1][0];

 return $first_img;

}

Explanations: rockable_post_image() fetches the image for
the current post. It follows an order: "rst, it looks for a custom
"eld with the key “rockable_post_image”. If not found, it looks
for the post thumbnail (a built in WordPress feature). If there is
still no image found, it scans the content of the post to search
for the "rst image, using regular expressions (the function
rockable_get_first_image()). Therefore, if you wanted to
display the post image, you could use code like this:

<img src="<?php echo rockable_post_image(); ?>" alt="" />

Simple, don’t you agree?

Note: You might notice that I am prefixing every func tion with
rockable_ — e.g. rockable_post_image(). This is so that there
are no conflicts with other plugins or scripts. If I used a generic
function name like get_image() there could be conflicts with the
core WordPress code or with plugins. Always try to use a unique
prefix in your code.

If you take a look at the php folder of the theme, you’ll notice a "le
timthumb.php — this is an automatic resizing script — read more

Setup & Managing Files24

about it here: http://www.darrenhoyt.com/2008/04/02/timthumb-
php-script-released/

TimThumb is very useful in WordPress themes. Since it dynamically
resizes images, by uploading just one image you can have different
image sizes throughout the theme without uploading many
differently cropped images. It’s used like this:

That will give you a resized image of image.jpg, with a width (w)
and height (h) of 100 pixels.

We’re going to be using TimThumb in this theme. Now, rather than
writing the same code over and over, I’ve written a function in
custom-functions.php to generate the TimThumb code for us:

function rockable_build_image($img='', $w=false, $h=false, ▶
 $zc=1){

 if ($h)

 $h = "&h=$h";

 else

 $h = '';

 if ($w)

 $w = "&w=$w";

 else

 $w = '';

 $image_url = ROCKABLE_THEME_DIR . ▶
 "/php/timthumb.php?src=" . $img . $h . $w;

 return $image_url;

}

The parameters for this function are the image source URL, width,
height, and the zoom-crop. One thing to note: if you specify only a

http://www.darrenhoyt.com/2008/04/02/timthumb-php-script-released/
http://www.darrenhoyt.com/2008/04/02/timthumb-php-script-released/

Setup & Managing Files25

height or width, TimThumb will maintain the aspect ratio. Therefore,
you are able to specify only height or width here, if wanted. Sample
usage:

rockable_build_image('image.jpg', 100) will give
you the URL to an image with a width of 100, and a corre-
sponding height. So if your original image was 200 × 70
pixels, the new one will be 100 × 35.

Similarly, rockable_build_image('image.jpg', false,
100) will give you the URL to an image with a height of 100,
and a corresponding width. So if your original image was
120 × 200 pixels, the new one will be 60 × 100.

Finally, there is one more generic function to be written. WordPress
has a built in function called the_excerpt() which displays a 55
word excerpt of the page. But what if we want a different number
of words in the excerpt? Here’s the code:

function rockable_excerpt($len=20, $trim="…"){

 $limit = $len+1;

 $excerpt = explode(' ', get_the_excerpt(), $limit);

 $num_words = count($excerpt);

 if ($num_words >= $len){

 $last_item = array_pop($excerpt);

 }

 else{

 $trim = "";

 }

 $excerpt = implode(" ",$excerpt) . "$trim";

 echo $excerpt;

}

Whoa, you say, what’s that? Let me break it down for you. The
parameters are the excerpt length (default 20) and the trim
character displayed after the excerpt (defaults to the HTML entity
… which is an ellipsis: ...). What it does is this:

Setup & Managing Files26

First, it gets the excerpt using get_the_excerpt().

Then, it explodes (breaks up) the excerpt into words by
separating them by blanks. For example, “Rockable is
awesome” would be broken into array('Rockable', 'is',
'awesome'). The exploded array is limited to the length of
the new excerpt, given by $len.

Then, if the number of words in $excerpt is more than the
length, it removes the rest of the words.

Finally, it joins up the array $excerpt using the implode()
function (opposite of explode()) and appends the $trim to
the end. It prints this new excerpt.

Sample usage:

rockable_excerpt(5); //prints a 5 word excerpt

With this, our basic setup is over and Chapter 1 comes to an end.
In the next chapter, you will learn how to create and style theme
options pages.

http://codex.wordpress.org/Function_Reference/get_the_excerpt
http://us3.php.net/manual/en/function.explode.php
http://us3.php.net/manual/en/function.implode.php

About The Author149

About The Author
Rohan Mehta is a Wordpress
and jQuery artist, with signi"cant
experience in Java and web
technologies. He is passionate about
racquet sports, reading, and of
course, code. In his opinion, code is
a form of art, and he expresses his
creativity in Java, PHP and JavaScript.
Rohan is currently in pursuit of a
Bachelor's degree in Computer
Science, and resides in the United
States and India; he can be reached
at his email, rohan@getrohan.com.

mailto:rohan@getrohan.com

	Introduction
	Files Included With The Book
	A Code Convention

	Setup & Managing Files
	Managing Files
	The functions.php file
	Basic Setup
	The wp_nav_menu() function
	JavaScript Files
	Image Functions

	Theme Options Pages
	The Options Page Design
	Options Files
	Generating the Pages
	Styling and Scripts
	Including the Files
	Using this Theme Options Framework in Another Theme
	The Home Page Slider Options
	The JavaScript Code
	Coding the Slider

	Custom Post Types and Taxonomies
	template_portfolio.php
	single-portfolio.php
	taxonomy-portfolio_cat.php

	Meta Boxes
	The Meta Box Options Files
	Coding the Meta Box Class
	Including the files
	Using the Class in Other Themes

	Custom Widgets
	Making the Theme Widget-Ready
	Custom Widgets
	Latest Portfolio Item Widget
	Contact Form Widget
	Tabbed Widget

	Miscellaneous Items
	Breadcrumbs
	Shortcodes
	Threaded comments
	Post Thumbnails

	Internationalization and Translation
	Text domains
	I18n functions
	Different i18n Scenarios
	Generating the .po file
	Using the PO file

	Afterword
	About The Author
	Your Download Link

